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In this paper, a refractive index profile design enabling us to obtain a flat modal field around the fibre centre

is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is

presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index

profile with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as

large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order

modes than the standard step-index fibre with the same bending radius.
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1. Introduction

The pursuit of highest power together with high-

est brightness can be efficiently fulfilled by rare-earth-

doped fibre lasers. As opposed to conventional diode-

pumped solid-state laser systems the significantly

longer interaction length and the tight confinement

of the laser radiation enforce disturbing nonlinear ef-

fects, such as self-phase modulation, stimulated Ra-

man scattering, and stimulated Brillouin scattering,

which constitute the main restriction of rare-earth-

doped fibre based laser systems.[1] It is the dominant

challenge if high peak powers from pulsed fibre based

laser system are generated, and even for the genera-

tion of continuous-wave radiation. However, using in-

novative fibre designs such as large-mode-area fibres,

we can achieve a significant reduction in power den-

sity in the fibre core with the retention of the out-

standing thermo-optical properties. Large flattened

mode (LFM) fibre has large mode area. It was pro-

posed firstly by Ghatak.[2] Its outstanding capability

to reduce nonlinear effects in optical fibre lasers has

been demonstrated at the Lawrence Livermore Na-

tional Laboratory.[3]

Most applications require diffraction-limited

beam quality. The requirement of single-transverse

mode confinement translates this into a maximum

core diameter of ≈ 15µm in a conventional, step-

index fibre in the one micron wavelength region. A

larger core would normally lead to the propagation

of higher-order transverse modes. However, several

techniques have been demonstrated to ensure single-

mode operation in slightly multimode fibres, such as

the application of bending losses,[4] which are sig-

nificantly higher for higher-order transverse modes

compared with the LP01 mode. Therefore, a prop-

erly coiled fibre can prefer single-mode operation in

a fibre that would otherwise be slightly multimode.

Other techniques include suitably manipulating the fi-

bre index and dopant profiles,[5−7] using special cavity

configurations,[8,9] tapering the fibre ends,[10] adjust-

ing the seed launch conditions.[11]

In this paper, we give a multilayer design for the

refractive index profile enabling us to get flat modal

field around the fibre core, in addition to the increase

in the effective area. A generalized formula for design-

ing the multilayer LFM fibres is given. For the sim-

plest three layer LFM fibres, the modal field, effective

area, and bending loss are discussed and comparisons

are made with the standard step-index fibres.

2. Theoretical analysis

In order to obtain the flat modal field over the

entire central region, the effective index (neff) of the
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mode should be equal to the refractive index of the

central dip. The refractive index profile is depicted in

Fig.1. The modal field (ψ) of the fundamental mode

of the fibre can be obtained by solving the following

wave equation:[12]

d2ψ

dr2
+

1

r

dψ

dr
+ k2

0(n2(r) − n2
1)ψ = 0, (1)

where k0 = 2π/λ, λ is the wavelength. To obtain

generalized field solutions, which can accommodate

an arbitrary number of claddings, we consider a fibre

consisting of N homogeneous dielectric regions, a cen-

tral region, and N − 1 claddings. The ith region has

a refractive index ni. In all the regions, nN is the

minimum refractive index and ni > n1 > nN (i=2,3,

,,N -1), the index difference between two layers is

small. r = ai(i=1,2, ,,N -1) defines the boundary

between the ith and i+ 1th regions.

Fig.1. Schematic diagram of the refractive index profile

of the LFM fibre.

The radial dependence of the fields is described in

terms of the Bessel and the modified Bessel functions,

it is essentially what is needed for the evaluation of

transmission properties.[13−16] The scalar modal field

of the fundamental mode is summarized as

ψ(r) =















A1; 0 ≤ r ≤ a1,

AiJ0(xir) + ĀiY0(xir); ai−1 ≤ r ≤ ai, i = 2, 3, · · · , N − 1,

ĀNK0(xN r); r > aN−1,

(2)
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(∣
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)1/2
,

and J0 and Y0 are Bessel functions of the first and sec-

ond kind respectively, I0 and K0 are modified Bessel

functions of the first and second kind respectively. Ai

and Āi are the constant amplitude coefficients.

Solving Eq.(2) in different regions and applying

the continuity conditions, one obtains the following

equation, which should be satisfied by the fibre pa-

rameters:
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The model can deal with multilayer LFM fibres, but the most simplest and typical is the three layer device.

So we can get the corresponding transcendental equation:

x3K
′
0(x3a2)

x2K0(x3a2)
=
J ′

0(x2a2)Y
′
0(x2a1) − J ′

0(x2a1)Y
′
0(x2a2)

J0(x2a2)Y ′
0(x2a1) − J ′

0(x2a1)Y0(x2a2)
, (3)
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where x2 = k0(n
2
2−n

2
1)

1/2, x3 = k0(n
2
1−n

2
3)

1/2. Given

the values of n1, n2, n3 and a2, the optimum value of

a1 can be obtained.

Once the scalar field for the LP01 mode is calcu-

lated, the effective area Aeff is calculated from

Aeff = 2π





∞
∫

0

ψ2(r)rdr





2

/

∞
∫

0

ψ4(r)rdr, (4)

where ψ(r) is given by Eq.(2). The expression for

effective area is based on the so-called Petermann

definition.[17]

In calculating the bending loss, we used the

method outlined in Ref.[18] (Chap. 23). The fibre core

and inner claddings are substituted by an equivalent

current radiating as an antenna in an infinite medium

of index equal to nN . To a first approximation and

using the Maxwell’s equation ∇ × H = J + jwεE,

we get the current density of the equivalent radiating

antenna

J = −2πj
√

ε0/µ0

[

n2
N − n2(r)

]

E(r)/λ, (5)

where E(r) is the exact electric field of the fibre. As an

approximation, it is sufficient to assume that this field

is the same as the field of the straight fibre, provided

that the bending radius is large enough compared with

the fibre dimensions. The bending loss is essentially

the power radiated from the current distribution in

Eq.(5).

3. Results and discussions

The LFM fibres with different claddings can be

designed according to the desired properties. In this

article, we mainly discuss the simplest and most typ-

ical three-layer LFM fibre consisting of a central dip,

core and outer cladding. The refractive index can be

chosen by using different materials. In our calcula-

tions, n1 = 1.458, n2 = 1.459, n3 = 1.457, where n1,

n2, n3 are the refractive indices of the central dip, the

core and the outer cladding respectively.[3]

With the transcendental equation (3), the vari-

ation of the radius of the central dip a1 versus that

of the core a2 at λ = 1.06µm is shown in Fig.2.

The black squares are the computed values and the

line is for fitting. With the increasing core size, the

optimum value of the central dip increases approxi-

mately linearly. Fitted linearly, we can get the fit-

ting relation a1 = −3.71853+1.05676a2. The inset of

Fig.2 shows the dependence of the radius of the cen-

tral dip on the wavelength for a2 = 15µm. It can

be seen that the optimum value of the central dip

decreases approximately linearly with the increasing

wavelength. We can also get the fitted linear relation

a1 = 15.39389 − 3.02718λ. If fitted by polynomial

approximation, better fitting results can be achieved.

Fig.2. The radius of the central dip versus that of the core

at λ = 1.06µm, the inset shows the variation of the radius

of the central dip versus wavelength when a2 = 15µm.

Figure 3 gives the normalized modal field

(ψ(r)/ψ(0)) profiles of the fundamental mode calcu-

lated for LFM fibres with the core sizes 30µm, 40µm

and 50µm at λ = 1.06µm respectively. The opti-

mum central dip sizes are 24.3772µm, 34.5724µm and

44.6836µm. In the central dip, the modal fields are

flat, while in the core and outer claddings the fields

drop dramatically. It can be explained as follows. For

the LFM fibre, light trace in the core is quite different

from that in a standard step-index fibre.

Fig.3. The normalized mode field (ψ(r)/ψ(0)) profiles of

the fundamental mode calculated at λ = 1.06µm for LFM

fibres with core sizes 30µm, 40µm and 50µm respectively.

At the interface of central dip and the core, reflec-

tion and refraction occur because the index of central

dip is lower than that of the core. Part of the light

energy leaks away from the central dip for the total

internal reflection is not satisfied. Energy redistribu-

tion takes place as light propagates along the fibre.
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Finally, a stable homogeneous intensity distribution

of the fundamental mode is formed.

The variations of the effective area versus wave-

length for LFM and standard step-index fibres with

the same core sizes 30µm, 40µm and 50µm over the

wavelength range of λ = 0.96µm to λ = 1.12µm

are shown in Fig.4. The core and outer cladding re-

fractive indices of the standard step-index fibre are

ns
core = 1.458 and ns

clad = 1.457 respectively. The

LFM refractive index profile differs from the standard

step-index fibre profile by the inclusion of a ring raised

by 0.001µm in refractive index above the inner core. It

can be found that LFM fibre with core size 30µm has

nearly the same effective area as the standard step-

index fibre with core size 40µm. By comparison, the

effective area of the LFM fibre is about twice as large

as that of the standard one. It is obvious that manip-

ulating the refractive index in this way is an efficient

method to deal with the conflicts between the high

power and onset of nonlinear effect.

Fig.4. The effective areas versus wavelength for LFM and

standard step-index fibres with the same core sizes 30µm,

40µm and 50µm respectively.

The bending losses are presented in Fig.5, which

illustrates variations of bending loss versus bending ra-

dius for LFM and standard step-index fibres with the

same core sizes 30µm, 40µm and 50µm at λ = 1.06µm.

Fig.5. Bending loss characteristics calculated at λ =

1.06µm for LFM and standard step-index fibres with the

same core sizes 30µm, 40µm and 50µm respectively

It can be found that the fibre with large core size usu-

ally suffers larger bending loss. Comparing the LFM

fibre and the standard step-index fibre with the same

core size, we know that the LFM fibre has smaller

bending loss than the standard one and the bend-

ing loss difference between two kinds of fibre becomes

smaller with increasing core size.

In order to clarify whether bending loss filtering

for the LFM fibre is more efficient than the standard

step-index fibre, we discuss the bending loss differ-

ence between LP11 mode and LP01 mode with differ-

ent bending radius. Fig.6 shows the calculated dif-

ferences for LFM and standard step-index fibres with

the same core sizes at λ = 1.06µm. It can be seen

that the standard step-index fibre has larger bending

loss difference than the LFM fibre for a fixed bending

radius. That is to say, with the same bending radius,

bend-loss-induced filtering of the standard step-index

fibre is more effective than that of the LFM one.

Fig.6. Bending loss differences between LP11 and LP01

modes versus bending radius calculated at λ = 1.06µm for

LFM and standard step-index fibres with the same core

sizes 30µm, 40µm and 50µm respectively

4. Conclusions

In this paper, we have given a new refractive index

profile design which can help us to obtain flat modal

field around the fibre centre. We mainly discuss the

simplest and most typical three-layer LFM fibres. The

optimum central dip size is analysed and the size be-

haves linear behaviours with the core size and wave-

length approximately. The comparison between LFM

fibre and standard step-index fibre testifies that the

LFM fibre has larger effective area. Comparing the

bending loss of the LFM fibre with the standard step-

index one with the same bending radius, however, we

find that bend-loss-induced filtering is more effective

for the standard step-index fibre.
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